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Role of Mitochondrial 
Dysfunction in Dry 
Age-Related Macular 
Degeneration
The site of intracellular metabolism may be a relevant drug target in dry AMD.

BY SCOTT W. COUSINS, MD

A
ge-related macular degeneration (AMD) 
accounts for 54% of all blindness in Americans 
of European ancestry, as well as 5% of all blind-
ness globally.1 It affects 30% of people over the 

age of 65 and is the most common cause of blindness in 
the elderly.2 The prevalence of AMD was estimated to 
be 6.5% in the 2005-2008 National Health and Nutrition 
Examination Survey.3 AMD costs the United States 
more than $51 billion a year in medical expenses and 
lost worker productivity,4 as reflected by research data 
associated with disability in instrumental activities of 
daily living.5 The incidence of AMD in this country is 
expected to grow from 11 million today to approxi-
mately 22 million by 2050.6

AMD is a progressive degenerative disorder of the 
macula in which central vision becomes impaired.7 
There are two subtypes of AMD: early and late. Early 
AMD is characterized by moderate to severe lipid-
rich, sub–retinal pigment epithelium (RPE) deposits 
(ie, drusen) and pigment abnormalities. Late-stage 
AMD is often subdivided into geographic atrophy 
(degenerative loss of the photoreceptors, RPE, and cho-
riocapillaris) and neovascular AMD (subretinal invasion 
of pathologic new vessels).

The drusen and geographic atrophy stages of AMD 
are collectively termed dry AMD, and this entity pres-
ents a considerable challenge for the vision community 
because the etiology has not been clearly resolved.8 
The pathogenesis of dry AMD is multifactorial, and 

it includes aging,3,9 genetic abnormalities,10 systemic 
health,9,11 environmental risk factors (including ciga-
rette smoking),12 and mitochondrial dysfunction.13,14 
Currently, no treatment is available for dry AMD, nor, 
more important, is there any known treatment that 
causes the regression of drusen or prevents their pro-
gression to geographic atrophy.

A NEW PARADIGM FOR DRY AMD 
PATHOGENESIS
Mitochondrial Dysfunction Induced by 
Environmental Toxicants

Multiple paradigms have been proposed for the patho-
genesis of early AMD or, more broadly, dry AMD, includ-
ing genetic susceptibility interacting with environmental 

At a Glance
•	 Mitochondrial dysfunction induced by 

environmental toxicants may be an important 
risk factor in the etiology of dry age-related 
macular degeneration (AMD).

•	 In laboratory models, a novel mitochondrial 
protective compound targeting mitochondria 
in the retinal pigment epithelium appears to 
prevent dysfunction that might be a causative 
factor in AMD.
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and systemic health factors. We propose that mitochon-
drial dysfunction induced by environmental toxicants is 
a fundamental risk factor for, and a hypothesis for, the 
etiology of dry AMD. 

Role of Mitochondria in Health and Disease
Mitochondria are intracellular organelles necessary 

for cell function and survival—including the cells of 
the RPE. They are crucial for the synthesis of adenosine 
triphosphate (ATP), the major form of cellular energy. 
Understanding of the role that mitochondria play in 
health, disease, and aging has advanced considerably 
since mitochondrial dysfunction was first described by 
Luft et al.15 Major structures of mitochondria include 
the inner and outer mitochondrial membranes, cristae, 
and electron transport chain (ETC).16 Cardiolipin (CL), 
a unique phospholipid exclusive to mitochondria and 
present only in the inner membrane of mitochondria 
(IMM), acts as a linchpin to hold together the respiratory 
protein complex subunits (complexes I, II, III, and IV) of 
the ETC that are essential to achieve optimal functioning 
of numerous enzymes involved in mitochondrial energy 
metabolism.17

However, CL is susceptible to peroxidation, leading to 
loss of its biophysical properties that support the ETC. 
Abnormal function of the ETC drives mitochondrial dys-
function, defined as loss of ATP synthesis, coupled with 
pathologic production of reactive oxygen species (ROS), 
especially superoxide, and loss of transmembrane poten-
tial of the IMM.

Dry AMD and Mitochondrial Damage
Mitochondrial dysfunction has been implicated in the 

etiology of dry AMD. Mitochondria are located along 
the basal RPE near drusen. Mitochondrial dysmorpholo-
gy observed in RPE in eyes with AMD is consistent with 
severe dysfunction, and mitochondrial DNA from these 
eyes demonstrate increased oxidative damage. Finally, 
a genetic disease with mitochondrial DNA mutation, 
maternally-inherited diabetes and deafness (MIDD), is 
associated with an AMD-like maculopathy.14

A novel mitochondrial protective compound, 
MTP-131 (Ocuvia, Stealth BioTherapeutics), is a topical 
ophthalmologic investigational drug under development 
to treat both common and rare eye disorders, including 
retinal diseases and inherited mitochondrial optic neu-
ropathies. It works by targeting the IMM, electrostatically 
and transiently interacting with CL, including its various 
forms (eg, peroxidized CL), and restoring biophysical 
properties (healthy ATP and ROS levels) and function 
of the ETC,18 thereby modifying ophthalmologic disease 
progression.

DRY AMD AND CIGARETTE SMOKE–RELATED 
TOXICANTS

Cigarette smoking is the most important environmen-
tal risk factor for dry AMD onset and progression,19-23 
although other factors associated with Western lifestyle 
also play a role. Our laboratory identified a major chemical 
toxicant in tobacco tar, hydroquinone (HQ), as a potential 
biochemical cause of RPE cellular injury inducing drusen 
and geographic atrophy.24 HQ is on the US Environmental 
Protection Agency’s list of dangerous environmental 
toxicants.25 In addition to cigarette tar, HQ is present in 
industrial pollution, engine exhaust, and food stored in 
plastic containers (due to HQ used in plastics).21,26 Acute 
exposure to high doses of HQ causes seizures and death; 
however, less well-known are the health effects of chronic 
exposure to low levels of HQ. 

Preclinical and Animal Models of Dry AMD and 
HQ-Induced Mitochondrial Dysfunction

Our research has shown that RPE mitochondria are 
a major target of HQ in the eye, and that HQ exposure 
induces acute and chronic mitochondrial dysfunction 
resulting in biochemical and cellular changes consistent 
with dry AMD. In vitro exposure of cultured RPE to HQ 
induces mitochondrial dysfunction, which in turn trig-
gers cellular injury pathways consistent with AMD bio-
chemistry. Further, aged mice fed HQ develop AMD-like 
sub-RPE deposits.24,27 Finally, repeated subconjunctival 
injection of HQ in young mice over a 2-week period 
produces sub-RPE deposit formation and mitochondrial 
dysfunction with biochemical changes similar to those 
observed in cell culture.

MTP-131 Prevents Dry AMD Phenotype Associated 
with HQ-Induced Mitochondrial Dysfunction

Our laboratory has performed preliminary testing 
of MTP-131 in cell culture and in a mouse model, and 

Figure 1.  MTP-131 prevented HQ-induced deposits in an 

acute mouse model. Note: subconjuctival is abbreviated as 

subconj in the image.
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we have found that the investigational drug was highly 
effective in several experimental models. In cell culture, 
MTP-131 prevented HQ-induced mitochondrial dys-
function, activation of biochemical injury pathways, and 
cellular functions associated with deposits. Even more 
impressive, MTP-131 prevented HQ-induced mitochon-
drial dysfunction, biochemical injury pathways, and 
deposit formation in a mouse model. 

As compared with HQ-exposed, vehicle-treated eyes 
(Figure 1A), the outer retinas of mice treated with daily 
MTP-131 (3 mg/kg subcutaneous, Figure 1B) before and 
during 2 weeks of HQ exposure had normal basal infold-
ings (yellow asterisk), minimal deposit formation, normal 
Bruch membrane thickness (red line), and endothelium 
with fenestrations (black arrowhead). Moreover, RPE 
mitochondrial morphology and ultrastructure, which 
shows irregular shape and typical vacuolization following 
repetitive subconjunctival HQ exposure, was normalized 
by treatment with MTP-131 (Figure 2). These mitochon-
drial ultrastructural differences between groups treated 
with vehicle and with MTP-131 are known to closely cor-
relate with ATP and oxidative stress levels, mitochondrial 
respiration, and overall ETC function.28 

HUMAN STUDY ONGOING
Jeffery Heier, MD, is leading a phase 1/2 open-label, 

dose-escalation clinical study of topical MTP-131 to bet-
ter understand its safety and tolerability in patients with 
diabetic macular edema and dry AMD.29 Our preliminary 
preclinical studies provide a rationale for advancing 
this therapy into later-stage clinical trials for early- or 
late-stage dry AMD.  n
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Figure 2.  MTP-131 prevented mitochondrial vacuoliza-
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administration.


